1)

The vapour pressure of pure $CCl_{4}$ (molar  mass=154 g mol-1) and $SnCl_{4}$ (molar mass=170 g mol-1) at $25^{0} C$ are 115.0 and 238.0  torr respectively . Assuming ideal behaviour  , calculate the total approximate vapour  pressure  in torr of a solution containing 10 g of $CCl_{4}$  and 15 g of $SnCl_{4}$.


A) 185.85

B) 190.0

C) 180.7

D) 182.1

Answer:

Option A

Explanation:

Given, vapour pressure of pure $CCl_{4}$ at 25° C

           $(P^{0}_{CCl_{4}})=$  115.0 torr

 Vapour pressure  of pure $SnCl_{4}$ at $25^{0}$C

                 $(P^{0}_{SnCl_{4}})=$  238.0 torr

 Molar mass of $CCl_{4}$   $ [M_{(CCl_{4})}]=154 g$$mol ^{-1}$

Molar mass of $SnCl_{4}$  in solution  $[M_{SnCl_{4}}]$= 170 g $mol^{-1}$

 Mass of $CCl_{4}$ in solution  $(w_{CCl_{4}})=10g$

 mass of $SnCl_{4}$ in solution    $(w_{SnCl_{4}})=15 g$

 from Dalton's law of partial pressure,

$p_{total}=\chi_{CCl_{4}}.p^{0}_{CCl_{4}}+\chi_{SnCl_{4}}. p^{0}_{SnCl_{4}}$

 and     $\chi=\frac{n_{simple}}{n_{total}}=\frac{w}{M \times n_{total}}$

Now,  $n=\left[\frac{w}{M}\right]_{CCl_{4}}=\frac{10}{154}=0.065$

and     $\left[\frac{w}{M}\right]_{SnCl_{4}}=\frac{15}{170}=0.09$

  Thus,    $\chi_{CCl_{4}}=\frac{n_{CCl_{4}}}{n_{CCl_{4}}+n_{SnCl_{4}}}$

                     = $\frac{0.065}{0.06+0.09}$

 $\chi_{CCl_{4}}=\frac{0.065}{0.15}=0.43$

 Therefore,   $\chi_{SnCl_{4}}=1-0.43=0.57$

 Thus,     $p_{total}$= $0.43 \times 115.00+0.57 \times 238$

  =49.45+135.66=  185.11≈185.85 torr

 Hence, option (a) is the correct answer