Answer:
Option B
Explanation:
Focal length of the lines
$\frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Here, refractive index for galss lens, $n_{2}=1.5$
Refractive index for water , $n_{1}=1.3$
Radius of curvature , $R_{1}=10 cm$
$R_{2}= \infty$
Putting these values , we get
$\frac{1}{f}=\left(\frac{1.5}{1.3}-1\right)\left(\frac{1}{10}-\frac{1}{\infty}\right)$
$\frac{1}{f}=\frac{0.15}{10}$
$\Rightarrow$ f=65 cm
Now parallel beam of light will converge at the focus of lens, so image position v=65 cm.