1)

 The position vector of a particle  moving in a plane is given by r=acosωtˆi+bsinωtˆj,  where ˆi  and ˆj  are the unit  vectors  along the rectangular axes X and Y ;a,b and ω  are constants  and t is time . The acceleration  of the particle is directed along the vector 


A) aˆi+bˆj

B) bˆi+aˆj

C) -r

D) drdt

Answer:

Option C

Explanation:

Given  , position vector ,

     r=acosωtˆi+bsinωtˆj ........(i)

 on differentiating both sides w.r.t t, we get

 velocity  , dxdt=v=aωsinωtˆi+bωcosωtˆj

 Again , on differentiating w.r.t t, we get

 acceleration  dvdt=a=aω2cosωtˆibω2sinωtˆj

                      a=ω2(acosωtˆi+bsinωtˆj)

Form Eq. (i) , we get  a=ω2(r)=ω2r

 Hence, acceleration is along -r