Answer:
Option C
Explanation:
Given , position vector ,
r=acosωtˆi+bsinωtˆj ........(i)
on differentiating both sides w.r.t t, we get
velocity , dxdt=v=−aωsinωtˆi+bωcosωtˆj
Again , on differentiating w.r.t t, we get
acceleration dvdt=a=−aω2cosωtˆi−bω2sinωtˆj
a=−ω2(acosωtˆi+bsinωtˆj)
Form Eq. (i) , we get a=ω2(r)=−ω2r
Hence, acceleration is along -r