Answer:
Option C
Explanation:
Given , position vector ,
$r= a \cos \omega t \hat{i}+b \sin \omega t \hat{j}$ ........(i)
on differentiating both sides w.r.t t, we get
velocity , $\frac{dx}{dt}=v=-a \omega \sin \omega t \hat{i}+b \omega \cos \omega t \hat{j}$
Again , on differentiating w.r.t t, we get
acceleration $\frac{dv}{dt}=a=-a \omega^{2} \cos \omega t \hat{i}-b \omega^{2} \sin \omega t \hat{j}$
$a=-\omega^{2}(a \cos \omega t \hat{i}+b \sin \omega t \hat{j})$
Form Eq. (i) , we get $a= \omega^{2}(r)= -\omega^{2}r$
Hence, acceleration is along -r