1)

Calculate the minimum thickness  of a soap  film (n=1.33) that results in constructive  interference in reflected light, If the film is illuminated  with light whose wavelength  in free space is 532 nm


A) 113 nm

B) 100 nm

C) 200 nm

D) 226 nm

Answer:

Option B

Explanation:

 For constructive interference  through a thin film  in reflected ligh, thickness  of film  must be

 $t=\left(m+\frac{1}{2}\right)\frac{\lambda}{2n_{2}}$

 where, m=0,1,2,.....

 and $n_{2}$ = refractive index  of medium (soap film) with given values, we get

 $t= \frac{\lambda}{4n_{2}} $                   ( $t_{min}$ occurs with m=0)

 = $\frac{532 \times 10^{-9}}{4 \times 1.33}=100 n m$