Answer:
Option A
Explanation:
Equivalent spring constant of system of springs =$\frac{3k}{2}=3 N/m$
Momentum is conserved in collision. Let blocks moves with velocity v just after collision then
$m_{1}v_{1}=(m_{1}+m_{2})v$
$ 10 \alpha \times 10^{-3} \times 3=(10 \alpha +10)\times 10^{-3} \times v$
$\Rightarrow$ $v= \frac{30 \alpha}{10(\alpha+1)}= \frac{3 \alpha}{\alpha+1} ms^{-1}$
Displacement of blocks is $\frac{1}{2\sqrt{2}}$m.
so , energy conservation gives,
$\frac{1}{2}(m_{1}+m_{2})v^{2}=\frac{1}{2}k_{eq} x^{2}$ [ friction is absent]
$\Rightarrow$ $\frac{(10\alpha+10)\times 10^{-3}\times 9\alpha^{2}}{(\alpha+1)^{2}}=3\times \frac{1}{8}$
$\Rightarrow$ $\frac{ 9\alpha^{2}}{100(\alpha+1)^{}}=\frac{3}{8}$
$24 \alpha^{2}=100 \alpha +100 \Rightarrow \alpha =5$