Answer:
Option A
Explanation:
Given , $\theta=at^{2}$
so angular velocity ,$\omega=\frac{d\theta}{dt}=2at$
linear tangential velocity,
$v=\omega r=2atr $ $\frac{v}{t}=2ar$
So, tangential linear acceleration of particle is
$a_{1}=\frac{dv}{dt}=2ar$
and angular acceleration of partcle is
$\alpha=\frac{d\omega}{dt}=2a$
Also, normal or radial acceleration of particle is
$a_{n}=\frac{v^{2}}{r}= \frac{4a^{2}t^{2}r^{2}}{r}=4a^{2}t^{2}r$
Total acceleration of particle is
$a_{total}=\sqrt{a_{t}^{2}+a_{n}^{2}}=\sqrt{4a^{2}r^{2}+16a^{4}t^{4}r^{2}}$
$=2ar\sqrt{1+4a^{2}t^{4}}$
$=\frac{v}{t}\sqrt{1+4a^{2}t^{4}}$