Answer:
Option D
Explanation:
Let object is at B(x,y) after $t=\sqrt{2}s$
Then, $x=u_{x} \times t=v_{0}\cos 45^{0} \times \sqrt{2}=v_{0}$
and $y= u_{y}t-\frac{1}{2}a_{y}t^{2}=v_{0}(\sin 45^{0}) \sqrt{2}-\frac{1}{2}(10)\times (\sqrt{2})^{2}$
=$(v_{0}-10)m$
Displacement OB of particle is
$OB=\sqrt{OA^{2}+AB^{2}}$= $\sqrt{v_{0}^{2}+(v_{0}-10)^{2}}$
So, $v_{avg}= \frac{OB}{t}=v_{0}$ $OB=v_{0}t$
$\Rightarrow$ $\sqrt{v_{0}^{2}+(v_{0}-10)^2}=v_{0}\sqrt{2}\Rightarrow v_{0}^{2}+(v_{0}-10)^{2}=2v_{0}^{2}$
$\Rightarrow $ $v_{0}-10=\pm v_{0}$ $2v_{0}=10\Rightarrow v_{0}=5 ms^{-1}$