Answer:
Option B
Explanation:
along Y-axis , net force on the particle is
$F=-(kx \sin 45^{0}+kx \sin 45^{0}+2kx \sin 135^{0}+2kx \sin 135^{0})$
= $-\frac{6}{\sqrt{2}}$kx
$\Rightarrow$ $m\frac{d^{2}x}{dt^{2}}=-3\sqrt{2}kx\Rightarrow\frac{d^{2}x}{dt^{2}}+\frac{3\sqrt{2}kx}{m}=0$
This is equation of SHM
Angular frequency, $\omega^{2}=3\sqrt{2}\frac{k}{m}$
$\Rightarrow$ $f=\left(\frac{1}{2}\pi\right)\sqrt{\frac{3\sqrt{2}k}{m}}\Rightarrow T=2\pi\sqrt{\frac{m}{3\sqrt{2}k}}$