Answer:
Option A
Explanation:
We have ,
f(x)={√1+ax−√1−axx,−1≤x<0x2+2x−2,0≤x≤1is
Since, f(x) is continuous on [-1,1]
∴ f(x) is continuous at x=0
∴ LHS (at x=0)=RHL(at x=0)
⇒lim
\Rightarrow \lim_{x \rightarrow 0}\frac{(1+ax)-{(1-ax)}}{x[\sqrt{1+ax}+\sqrt{1-ax}]}=\lim_{x \rightarrow 0}\frac{x^{2}+2}{x-2}
\Rightarrow \lim_{x \rightarrow 0}\frac{2a}{\sqrt{1+ax}+\sqrt{1-ax}}=\lim_{x \rightarrow 0}\frac{x^{2}+2}{x-2}
\Rightarrow a=-1