Answer:
Option C
Explanation:
We have
$D_{1}:y=4\frac{dy}{dx}+3x\frac{dx}{dy} \Rightarrow y\frac{dy}{dx}=4\left(\frac{dy}{dx}\right)^{2}+3x$
$\therefore$ Order=1, Degree=2
$D_{2}:\frac{d^{2}y}{dx^{2}}=\left(3+\left(\frac{dy}{dx}\right)^{2}\right)^{4/3}$
= $\left(\frac{d^{2}y}{dx^{2}}\right)^{3}=\left(3+\left(\frac{dy}{dx}\right)^{2}\right)^{4}$
$\therefore$ Order=2, Degree=3
$D_{3}:\left[1+\left(\frac{dy}{x}\right)\right]^{2}=\left(\frac{dy}{dx}\right)^{2}$
$\Rightarrow$ $1+\left(\frac{d^{}y}{dx^{}}\right)^{2}+2\frac{dy}{dx}=\left(\frac{dy}{dx}\right)^{2}\Rightarrow1+2 \frac{dy}{dx}=0$
$\therefore$ Order=1, Degree=1
$\therefore$ Required ratio = $\frac{1+2+1}{2+3+1}=\frac{4}{6}=\frac{2}{3}$