1)

If  xx3xdx=x+Ex5/6+Dx2/3+Cx1/2+Bx1/3+Ax1/6+log(6x1)6+K, then A+B+C+D+E=


A) 13710

B) 12910

C) 11910

D) 11710

Answer:

Option A

Explanation:

Let  I=xx3xdx

 Put   x=t6dx=6t5dx

         I=t3.6t5t3t2dt

=6t8t2(t1)dt=6t6t1dt

=6(t61)+1(t1)dt=6(t31)(t3+1)+1t1dt

 =6(t1)(t2+t+1)(t3+1)+1t1dt

 =6[t5+t2+t4+t+t3+1+1t1]dt

=6[t5+t4+t3+t2+t+1+1t1]dt

 =6[t66+t55+t44+t33+t22+t+log(t1)]+k

 =x+65x5/6+32x2/3+2x1/2+3x1/3+6x1/6+log(6x1)6+k

     A=6,B=3,C=2,D=32,E=65

 therefore     A+B+C+D+E=6+3+2+32+65

=11+32+65=110+15+1210=13710