Answer:
Option A
Explanation:
Let I=∫√x√x−3√xdx
Put x=t6⇒dx=6t5dx
∴ I=\int\frac{t^{3}.6t^{5}}{t^{3}-t^{2}}dt
=6\int\frac{t^{8}}{t^{2}(t-1)}dt=6\int\frac{t^{6}}{t-1}dt
=6\int\frac{(t^{6}-1)+1}{(t-1)}dt=6\int\frac{(t^{3}-1)(t^{3}+1)+1}{t-1}dt
=6\int\frac{(t-1)(t^{2}+t+1)(t^{3}+1)+1}{t-1}dt
=6\int\left[ t^{5}+t^{2}+t^{4}+t+t^{3}+1+\frac{1}{t-1}\right]dt
=6\int\left[ t^{5}+t^{4}+t^{3}+t^{2}+t+1+\frac{1}{t-1}\right]dt
=6\left[\frac{t^{6}}{6}+\frac{t^{5}}{5}+\frac{t^{4}}{4}+\frac{t^{3}}{3}+\frac{t^{2}}{2}+t+\log(t-1)\right]+k
= x+ \frac{6}{5}x^{5/6}+\frac{3}{2}x^{2/3}+2x^{1/2}+3x^{1/3}+6x^{1/6}+\log (\sqrt[6]{x-1})^{6}+k
\therefore A=6,B=3,C=2,D=\frac{3}{2},E=\frac{6}{5}
therefore A+B+C+D+E=6+3+2+\frac{3}{2}+\frac{6}{5}
=11+\frac{3}{2}+\frac{6}{5}= \frac{110+15+12}{10}=\frac{137}{10}