Answer:
Option A
Explanation:
Let I=∫√x√x−3√xdx
Put x=t6⇒dx=6t5dx
∴ I=∫t3.6t5t3−t2dt
=6∫t8t2(t−1)dt=6∫t6t−1dt
=6∫(t6−1)+1(t−1)dt=6∫(t3−1)(t3+1)+1t−1dt
=6∫(t−1)(t2+t+1)(t3+1)+1t−1dt
=6∫[t5+t2+t4+t+t3+1+1t−1]dt
=6∫[t5+t4+t3+t2+t+1+1t−1]dt
=6[t66+t55+t44+t33+t22+t+log(t−1)]+k
=x+65x5/6+32x2/3+2x1/2+3x1/3+6x1/6+log(6√x−1)6+k
∴ A=6,B=3,C=2,D=32,E=65
therefore A+B+C+D+E=6+3+2+32+65
=11+32+65=110+15+1210=13710