Answer:
Option D
Explanation:
We have,
x24+y29=1 and x216−y2k=1
On solving these equation , we get
x2=144+16k36+k and y2=−27k36+k ..........(i)
Now, x24+y29=1
⇒ 2x4+2yy′9=0⇒y′=−94xy ..........(ii)
again , x216−y2k=1⇒2x16−2yy′k=0
⇒ y′=k16xy ............(iii)
Since both curves are orthogonal
∴ −94xy×k16xy=−1⇒9kx2=64y2
From Eq.(i) , we have
9k(144+16k36+k)=64(−27k36+k)⇒k=−21