Answer:
Option D
Explanation:
Let Q(h,k) be the mid-point of the line joining the focus F(a,0) and variable point $p(x_{0},y_{0})$.
$\therefore$ $(h,k)=\left(\frac{x_{0}+a}{2},\frac{y_{0}}{2}\right)$
$\Rightarrow$ $h=\frac{x_{0}+a}{2}$ and $k=\frac{y_{0}}{2}$
$\Rightarrow$ $x_{0}=2h-a $ and $y_{0}=2k$
Since P(x0,y0) lies on parabola $y^{2}=4ax$
$\therefore$ $y_{0}^{2}=4ax_{0} \Rightarrow (2k)^{2}=4a(2h-a)$
$\Rightarrow$ $4k^{2}=4a(2h-a)\Rightarrow k^{2}= 2a \left(h- \frac{a}{2}\right)$
Which is equation of parabola
$\therefore$ $y^{2}=2a\left(x-\frac{a}{2}\right)$
$\therefore$ Equation of directrix is given by
$x-\frac{a}{2}=\frac{-a}{2}\Rightarrow x=0$