Answer:
Option D
Explanation:
We have
sinh−12+cosh−12−tanh−123+coth−1(−2)
= ln(2+√22+1)+ln(2+√22−1)−12ln(1+2/31−2/3)+12ln(−2+1−2−1)
=ln(2+√5)+ln(2+√3)−12ln5+12ln13
=ln[(2+√5)(2+√3)√3√5]
∵sinh−1x=ln(x+√x2+1),cosh−1x=ln(x+√x2−1),
tanh−1x=12ln(1+x1−x),coth−1x=12ln(x+1x−1)