Answer:
Option B
Explanation:
[321−4230−11−63−8]
On applying R2→R2−23R1 and R3→R3−13R1
we get
A= [321−405/3−2/35/30−20/38/3−20/3]
On applying R3→R3+4R2, we get
A=[321−405/3−2/35/30000]
∴ There are two linear independent row, i.e.
R1andR2
∴ Rank of matrix A=2