1) If A=[1101] and I=[1001] then for all n∈N A) An=nA B) An=nA+(n−1)A C) An=(n−1)A−nl D) An=nA−(n−1)l Answer: Option DExplanation: We have A=[1101] and I=[1001] Now, A2=A.A= [1101][1101]=[1201] =2[1101]−[1101]=2A−(2−1)I Again, A3=A2.A= [1201][1101]=[1301] =3[1101]−2[1001]=3A−(3−1)I ∴ A″=nA−(n−1)I