1)

 If A and B are two independent events such that $P(B)=\frac{2}{7}$ and $P(A\cup B^{c})=0.8 ,$   then  $P(A\cup B)=$


A) $\frac{29}{35}$

B) $\frac{39}{70}$

C) $\frac{1}{2}$

D) $\frac{41}{105}$

Answer:

Option C

Explanation:

We have , $P(A\cap B)=P(A).P(B),P(B)=\frac{2}{7}, $and  $ P(A\cup B^{c})=0.8$  

Consider   $P(A\cup B^{c})=0.8$

$\Rightarrow$    $P(A^{c}\cap B^{c})=0.8\Rightarrow1-P(A^{c}\cap B)=0.8$

 $\Rightarrow P(A^{c}\cap B^{})=0.2\Rightarrow P(A^{c}).P( B)=0.2$

[ $\because$   A and B are independent events , therefore $A^{c}$ and B, are also independent]

$ \Rightarrow P(A^{c}) =0.2\times \frac{7}{2}=0.7\Rightarrow P(A)=0.3$

and So,   $P(A\cap B)=P(A).(B)=\frac{3}{10}.\frac{2}{7}=\frac{6}{70}$

 Now,   $P(A\cup B)=P(A)+P(B)-P(A\cap B)$

 $=\frac{3}{10}+\frac{2}{7}-\frac{6}{70}=\frac{21+20-6}{70}=\frac{35}{70}=\frac{1}{2}$