Answer:
Option D
Explanation:
Given PQRS a quadrilateral A divides SR in the ratio 1:3 and B is the mid point PR.
Let the position vector of P,Q, R, S, A , B arep,q,r,s,a and b respectively
$\therefore$ SR=r-s ;QR=r-q
PS=s-p, PQ=q-p
AB=b-a
$a=\frac{3s+r}{4};b=\frac{p+r}{2}$
Now, 3SE-QR-3PS-PQ=KAB
3(r-s)-(r-q)-3(s-p)-(q-p)=k(b-a)
$\Rightarrow$ 3r-3s-r+q-3s+3p-q+p=k
$\left(\frac{p+r}{2}-\frac{3s+r}{4}\right)$
$=2r-6s+4p=k\left(\frac{2p+2r-3s-r}{4}\right)$
$=8r-24s+16p=2kp+2kr-3ks$
$\therefore$ k=8