Answer:
Option D
Explanation:
Given PQRS a quadrilateral A divides SR in the ratio 1:3 and B is the mid point PR.

Let the position vector of P,Q, R, S, A , B arep,q,r,s,a and b respectively
∴ SR=r-s ;QR=r-q
PS=s-p, PQ=q-p
AB=b-a
a=3s+r4;b=p+r2
Now, 3SE-QR-3PS-PQ=KAB
3(r-s)-(r-q)-3(s-p)-(q-p)=k(b-a)
⇒ 3r-3s-r+q-3s+3p-q+p=k
(p+r2−3s+r4)
=2r−6s+4p=k(2p+2r−3s−r4)
=8r−24s+16p=2kp+2kr−3ks
∴ k=8