Answer:
Option B
Explanation:
x+5(x+1)2(x+2)=A(x+1)+B(x+1)2+C(x+2) ..........(i)
⇒ x+5=A(x+1)(x+2)+B(x+2)+c(x+1)2
⇒ x+5=x2(A+C)+x(3A+B+2C)+2A+2B+C
on comparing the coefficients of like power of x , we get
A+C=0,
3A+B+2C=1 and 2A+2B+C=5
on substituting A=-C in last two equations, we get
B-C=1 .....(ii)
and 2B-C=5 .......(iii)
On subtracting Eqs(ii) and (iii) , we get
B=4⇒C=3 [from Eq.(ii)]
and hence A=-3
Now, x+5(x+1)2(x+2)=−3(x+1)+4(x+1)2+3(x+2)
On differentiating both sides w.r.t x, we get
ddx(x+5(x+1)2(x+2))= 3(x+1)2−8(x+1)3−3(x+2)2