Processing math: 100%


1)

ddx(x+5(x+1)2(x+2))=


A) 8(x+2)23(x+1)2+3(x+1)3

B) 3(x+1)23(x+2)28(x+1)3

C) 3(x+2)23(x+1)38(x+1)2

D) 8(x+2)23(x+1)3+3(x+1)2

Answer:

Option B

Explanation:

x+5(x+1)2(x+2)=A(x+1)+B(x+1)2+C(x+2)  ..........(i)

     x+5=A(x+1)(x+2)+B(x+2)+c(x+1)2

   x+5=x2(A+C)+x(3A+B+2C)+2A+2B+C

on comparing  the coefficients of like power of x , we get

 A+C=0,

 3A+B+2C=1  and 2A+2B+C=5

 on substituting  A=-C  in last two equations, we get

    B-C=1  .....(ii)

    and  2B-C=5   .......(iii)

 On subtracting Eqs(ii) and (iii) , we get

              B=4C=3      [from Eq.(ii)]

and hence     A=-3

 Now,    x+5(x+1)2(x+2)=3(x+1)+4(x+1)2+3(x+2)

On differentiating  both sides  w.r.t x, we get

ddx(x+5(x+1)2(x+2))=   3(x+1)28(x+1)33(x+2)2