Answer:
Option A
Explanation:
We have,
$\frac{(1-i)^{3}(2-i)}{(2+i)(1+i)}=\frac{(1-i)^{2}(1-i)(2-i)}{(1+i)(2+i)}$
$=\frac{-2i(1-i)^{}(1-i)(2-i)(2-i)}{(1+i)(1-i)(2+i)(2-i)}$
$=\frac{-2i(-2i)(3-4i)}{2.5}=-2\left(\frac{3}{5}-\frac{4i}{5}\right)$
$=-2\left(\frac{-3}{5}+\frac{4}{5}i\right)$
$2cis\left( \pi-\tan^{-1}\frac{4}{3}\right)$