Answer:
Option A
Explanation:
We have
cos(π7)cos(2π7)cos(4π7)
Let A =π7⇒π=7A
= cosAcos2Acos4A=cosAcos2Acos22A
Now, we will use the formula
cosAcos2Acos22A.......cosn−1A=sin2nA2nsinA
∴ cosAcos2Acos22A=sin23A23sinA
=sin8A8sinA=sin(7A+A)8sinA=sin(π+A)8sinA
[∵7A=π]
=−sinA8sinA [∵sin(π+θ)=−sinθ)
= −18