Answer:
Option D
Explanation:
We have,
xn+px+q=0,
If α1,α2,.......,αn are roots of given equation so,
xn+px+q=(x−α1)(x−α2)(x−α3).......(x−αn)
⇒ xn+px+qx−αn= (x−α1)(x−α2)(x−α3).......(x−αn−1)
∴ lim (x-\alpha_{1})(x-\alpha_{2}) (x-\alpha_{3}).......(x-\alpha_{n-1})
\lim_{x \rightarrow \alpha_{n}}\frac{nx^{n-1}+P}{1}=(\alpha_{n}-\alpha_{1})(\alpha_{n}-\alpha_{2})......(\alpha_{n}-\alpha_{n-1})
\Rightarrow n \alpha_{n}^{n-1}+p=(\alpha_{n}-\alpha_{1})(\alpha_{n}-\alpha_{2})......(\alpha_{n}-\alpha_{n-1})