Loading [MathJax]/jax/element/mml/optable/BasicLatin.js


1)

If α1,α2,.......,αn  are the roots of xn+px+q=0,  then (αnα1)(αnα2)...............(αnαn1)=


A) nαn1+q

B) α21+α22+.....+α2n1

C) αn1n+p

D) nαn1n+p

Answer:

Option D

Explanation:

We have,

  xn+px+q=0,

 If   α1,α2,.......,αn    are roots of given equation so,

xn+px+q=(xα1)(xα2)(xα3).......(xαn)

    xn+px+qxαn=  (xα1)(xα2)(xα3).......(xαn1)

  lim (x-\alpha_{1})(x-\alpha_{2}) (x-\alpha_{3}).......(x-\alpha_{n-1})

\lim_{x \rightarrow \alpha_{n}}\frac{nx^{n-1}+P}{1}=(\alpha_{n}-\alpha_{1})(\alpha_{n}-\alpha_{2})......(\alpha_{n}-\alpha_{n-1})

 \Rightarrow      n \alpha_{n}^{n-1}+p=(\alpha_{n}-\alpha_{1})(\alpha_{n}-\alpha_{2})......(\alpha_{n}-\alpha_{n-1})