Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

The common roots of the equations z3+2z3+2z+1=0   and z2018+z2017+1=0 satisfy  the equation


A) z2z+1=0

B) z4+z2+1=0

C) z6+z3+1=0

D) z12+z61=0

Answer:

Option B

Explanation:

We have

 z3+2z3+2z+1=0 

     z3+1+2z(z+1)=0

   (z+1)(z2z+1)+2z(z+1)=0

    (z+1)(z2z+1+2z)=0

   (z+1)(z2+z+1)=0

So, z+1=0 and z2+z+1=0

z=-1 4z= ω,ω2

 hence,   roots of z3+2z2+2z+1 are 1,ω,ω2  for z=-1

 z2018+z2017+1=(1)2018+(1)2017+1

  =+1-1+1=1≠0

for    z=w

   z2018+z2017+1=(ω)2018+(ω)2017+1=ω2+ω+1= 0

                                                             [ω2+ω+1=0]

for  z=ω2

 z2018+z2017+1=  (ω2)2018+(ω2)2017+1

                      = ω4036+ω4034+1

             =ω+ω2+1=0

Thus, the common roots are ω and ω2 by checking  options

                 z4+z2+1=0

 for   z=ω

ω4+ω2+1=ω+ω2+1=0

 and for z=ω2

 (ω2)4+(ω2)2+1=ω8+ω4+1

                                         = ω2+ω+1=0

Hence, z4+z2+1=0 satisfy  by the both common  roots