Answer:
Option B
Explanation:
We have
z3+2z3+2z+1=0
⇒ z3+1+2z(z+1)=0
⇒ (z+1)(z2−z+1)+2z(z+1)=0
⇒ (z+1)(z2−z+1+2z)=0
⇒ (z+1)(z2+z+1)=0
So, z+1=0 and z2+z+1=0
z=-1⇒ 4z= ω,ω2
hence, roots of z3+2z2+2z+1 are −1,ω,ω2 for z=-1
z2018+z2017+1=(−1)2018+(−1)2017+1
=+1-1+1=1≠0
for z=w
z2018+z2017+1=(ω)2018+(ω)2017+1=ω2+ω+1= 0
[∵ω2+ω+1=0]
for z=ω2
z2018+z2017+1= (ω2)2018+(ω2)2017+1
= ω4036+ω4034+1
=ω+ω2+1=0
Thus, the common roots are ω and ω2 by checking options
z4+z2+1=0
for z=ω
ω4+ω2+1=ω+ω2+1=0
and for z=ω2
(ω2)4+(ω2)2+1=ω8+ω4+1
= ω2+ω+1=0
Hence, z4+z2+1=0 satisfy by the both common roots