1)
Let x≠0,|x|<12 and
f(x)=1+2x+4x2+8x3+.... Then f−1(x)=
Answer:
Option A
Explanation:
We have
f(x)=1+2x+4x2+8x3+.... and |x| < 12
Let f(x)=y
y=1+2x+4x2+8x3+.....
= 1+(2x)+(2x)2+(2x)3+....
y=11−2x [ ∵ sum of infinite G.P, S∞=a1−r]
⇒ y−2xy=1 ⇒ 2xy=y−1
⇒ x=y−12y⇒f−1(y)=y−12y
hence, f−1=x−12x