Answer:
Option A
Explanation:
Equation of plane passing through any three given point is
$\begin{bmatrix}x-x_{1} &y-y_{1}&z-z_{1} \\x_{2}-x_{1} & y_{2}-y_{1}&z_{2}-z_{1}\\x_{3}-x_{1}&y_{3}-y_{1}&z_{3}-z_{1} \end{bmatrix}$
Points are (-2,6,-6),(-3,10,-9) and (-5,0,-6)
$\Rightarrow$ $\begin{bmatrix}x+2 &y-6&z+6 \\-1 & 4&-3\\-3&-6&0 \end{bmatrix}=0$
$\Rightarrow $ $(x+2)(0-18)-(y-6)(0-9)+(z+6)(6+12)$=0
$\Rightarrow $ $-18(x+2)+9(y-6)+18(z+6)=0$
$\Rightarrow $ $-18x+9y+18z=36+54-108$
$\Rightarrow $ $-2 \hat{i}+\hat{j}+2\hat{k}=-2$
$\Rightarrow $ $2\hat{i}-\hat{j}-2\hat{k}=2$
$\therefore$ $r.(2\hat{i}-\hat{j}-2\hat{k})=2$