1)

In a ABC, sin A and sin B satisfy   c2x2c(a+b)x+ab=0 , then 


A) the triangle is acute angled

B) the triangle is obtuse angled

C) sinC=32

D) sinA+cosA=a+bc

Answer:

Option D

Explanation:

 We have,

  c2x2c(a+b)x+ab=0

   c2x2caxcbx+ab=0

   cx(cxa)b(cxa)=0

  (cx-a)(cx-b)=0

   cx-a=0 or cx-b=0

         x=ac and x=bc

 As, sin A and sin B  are roots of the given equation 

Let sinA=ac  and sinB=bc

        c=asinA  and c=bsinB

    asinA=bsinB=c  ...........(i)

Using sine law, asinA=bsinB=csinC   .............(ii)

So, csinc=c[From eqs.(i) and (ii) ]

     sinc=cc

     sinC=1       [sinπ2=1]

    C=π2

 2472021685_m4.PNG

    sinA=ac and cosA=bc

       sinA+cosA=ac+bc=a+bc