Answer:
Option D
Explanation:
We have,
c2x2−c(a+b)x+ab=0
⇒ c2x2−cax−cbx+ab=0
⇒ cx(cx−a)−b(cx−a)=0
⇒ (cx-a)(cx-b)=0
⇒ cx-a=0 or cx-b=0
⇒ x=ac and x=bc
As, sin A and sin B are roots of the given equation
Let sinA=ac and sinB=bc
⇒ c=asinA and c=bsinB
⇒ asinA=bsinB=c ...........(i)
Using sine law, asinA=bsinB=csinC .............(ii)
So, csinc=c[From eqs.(i) and (ii) ]
⇒ sinc=cc
⇒ sinC=1 [∵sinπ2=1]
⇒ ∠C=π2

sinA=ac and cosA=bc
∴ sinA+cosA=ac+bc=a+bc