1)

If α  is a root of z2+z+1=0  , then 

(α2014+1α2014)+(α2015+1α2015)2

+(α2016+1α2016)3+(α2017+1α2017)4+(α2018+1α2018)5=


A) 8

B) 5

C) 7

D) -5

Answer:

Option A

Explanation:

 z2z+1=0    then z=ω

So,   |(ω)2014+1(ω)2014|+[(ω)2015+1(ω)2015]2

[(ω)2016+1(ω)2016]3+[(ω)2017+1(ω)2017]4+[(ω)2018+1(ω)2018]5

[ω1ω]+[ω2+1ω2]2+8+[ω+1ω]4+[ω2+1ω2]5

  =[+ω+ω2]+[ω2+ω]2+8+[ωω2]4+[ω2+ω]5

   =-1+1+8+1+1-1=8