Answer:
Option A
Explanation:
$z^{2}-z+1=0$ then $z=-\omega$
So, $| (-\omega)^{2014}+\frac{1}{(-\omega)^{2014}}|+\left[(-\omega)^{2015}+\frac{1}{(-\omega)^{2015}}\right]^{2}$
$\left[ (-\omega)^{2016}+\frac{1}{(-\omega)^{2016}}\right]^{3}+\left[(-\omega)^{2017}+\frac{1}{(-\omega)^{2017}}\right]^{4}+\left[(-\omega)^{2018}+\frac{1}{(-\omega)^{2018}}\right]^{5}$
$\left[-\omega-\frac{1}{\omega}\right]+\left[\omega^{2}+\frac{1}{\omega^{2}}\right]^{2}+8+\left[-\omega+\frac{1}{-\omega}\right]^{4}+\left[\omega^{2}+\frac{1}{\omega^{2}}\right]^{5}$
$=[+\omega+\omega^{2}]+[\omega^{2}+\omega]^{2}+8+[-\omega-\omega^{2}]^{4}+[\omega^{2}+\omega]^{5}$
=-1+1+8+1+1-1=8