Answer:
Option A
Explanation:
z2−z+1=0 then z=−ω
So, |(−ω)2014+1(−ω)2014|+[(−ω)2015+1(−ω)2015]2
[(−ω)2016+1(−ω)2016]3+[(−ω)2017+1(−ω)2017]4+[(−ω)2018+1(−ω)2018]5
[−ω−1ω]+[ω2+1ω2]2+8+[−ω+1−ω]4+[ω2+1ω2]5
=[+ω+ω2]+[ω2+ω]2+8+[−ω−ω2]4+[ω2+ω]5
=-1+1+8+1+1-1=8