Answer:
Option B
Explanation:
We have, $\overline{z}-i\overline{w}=0 $
$\Rightarrow$ $i\overline{w}=\overline{z}\Rightarrow w=\frac{1}{i}\overline{z}$
$\Rightarrow$ $w=-\frac{1}{i}z\Rightarrow w=iz$
Now , we have
arg(zw)= $\frac{3\pi}{4}$
$\Rightarrow$ arg(z(iz))= $\frac{3\pi}{4}$
$\Rightarrow$ $arg(iz^{2})$= $\frac{3\pi}{4}$
$\Rightarrow$ $arg(i)+arg(z^{2})$= $\frac{3 \pi}{4}$
$[ \because arg(z_{1} z_{2})= arg(z_{1})+arg(z_{2})]$
$\Rightarrow$ $arg(i)+2arg(z)= \frac{3\pi}{4}$ [ $\because arg (z^{n})=n arg(z)]$
$\Rightarrow$ $\frac{\pi}{2}+2 arg(z)= \frac{3 \pi}{4}$
$\Rightarrow$ arg(z)= $\frac{\pi}{8}$