1)

The set of real values of $\alpha$ for which the system of linear equations

 $x+(\sin \alpha)y+(\cos \alpha)z=0$

$x+(\cos \alpha)y+(\sin \alpha )z=0$

$-x+(\sin  \alpha )y-(\cos \alpha  )z=0$

has a non-trivial solution is 


A) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}+\frac{\pi}{8}$ (n is an integer)

B) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{8}$ (n is an integer)

C) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{8}-\frac{\pi}{8}$ (n is an integer)

D) $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{4}-\frac{\pi}{8}$ (n is an integer)

Answer:

Option C

Explanation:

 $x+\sin \alpha y+\cos \alpha z=0, x+ \cos \alpha y+ \sin \alpha z=0$

  $-x+\sin  \alpha y-\cos \alpha z=0$

 Non-trivial sol, so  

$\begin{bmatrix}1 & \sin \alpha&  \cos \alpha \\1 & \cos \alpha& \sin \alpha\\ -1 & \sin \alpha & -\cos \alpha \end{bmatrix}=0$

  $\Rightarrow$    $| 1(-\sin^{2}  \alpha -\cos^{2} \alpha)-\sin \alpha(-\cos \alpha+\sin \alpha)+ \cos \alpha( \sin \alpha+\cos \alpha)|$=0

 $ -1- \sin  \alpha (- \cos \alpha+ \sin \alpha] +\cos \alpha [ \sin \alpha+\cos  \alpha]=0$

$-1+ \sin \alpha \cos \alpha- \sin^{2} \alpha+ \sin \alpha \cos \alpha + \cos ^{2} \alpha=0$

    $-1+ \sin 2 \alpha+\cos 2 \alpha=0$

$\sin 2 \alpha+\cos 2 \alpha=1$

  $\Rightarrow$       $\frac{1}{\sqrt{2}}\sin\alpha+\frac{1}{\sqrt{2}} \cos\alpha=\frac{1}{\sqrt{2}}$

  $\Rightarrow$   $\sin\left(2\alpha+\frac{\pi}{4}\right)=\sin\frac{\pi}{4}$

  $\Rightarrow$  $2\alpha+\frac{\pi}{4}=n\pi+(-1)^{n}\frac{\pi}{4}$ 

               $2\alpha=n\pi+(-1)^{n}\frac{\pi}{4}-\frac{\pi}{4}$

  $\Rightarrow$  $\alpha$= $\frac{n \pi}{2}+(-1)^{n} \frac{\pi}{8}-\frac{\pi}{8}$