Answer:
Option B
Explanation:
|111bc+adca+bdab+cdb2c2+a2d2c2a2+b2d2a2b2+c2d2|
Applying c1→c1−c2 and c2=c2−c3
|001c(b−a)+d(a−b)c(a−d)+b(d−a)ab+cdc2(b2−a2)+d2(a2−b2)c2(a2−d2)+b2(d2−a2)a2b2+c2d2|
⇒1[{c(b−a)+d(a−b)}{c2(a2−d2)+b2(d2−a2)}
⇒−[{c(a−d)+b(d−a)}{c2(b2−a2)+d2(a2−b2)}]
often after simplify we are getting
(a-b)(a-c)(b-c)(b-d)(a-d)(c-d)