1) A function f:R−{0}→R is defined as f(x)={x2+3x−7,x>0h(x),x<0 If f(x) is an odd function, then h(x)= A) x2+3x+7 B) x2+3x−7 C) −x2+3x+7 D) −x2−3x+7 Answer: Option CExplanation:f(x)={x2+3x−7,x>0h(x),x<0 f(x) is odd function, then h(x)=? forr odd function h(−x)=−h(x)⇒h(−x)=(−x)2−3x−7 ⇒ h(−x)=x2−3x−7 ⇒ −h(x)=−[x2−3x−7]⇒ −x2+3x+7