Answer:
Option A
Explanation:
Given that ,
$\frac{P(x=1)}{\frac{1}{2}}=\frac{P(x=2)}{\frac{1}{2}}=\frac{P(x=3)}{1}=\frac{P(x=4)}{\frac{1}{5}}=k$ (let)
$\because$ P(x=1)+P(x=2)+P(x=3)+P(x=4)=1
$\Rightarrow$ $\frac{k}{2}+\frac{k}{3}+k+\frac{k}{5}=1\Rightarrow k=\frac{30}{61}$
So, $P(x=1)=p_{1}=\frac{30}{2 \times 61}=\frac{15}{61}$
$P(x=2)=p_{2}=\frac{30}{3 \times 61}=\frac{10}{61}$
$P(x=3) =p_{3}= \frac{30}{61}$
and $P(x=4)=p_{4}= \frac{30}{5 \times 61}= \frac{6}{61}$
$\because$ $\sigma^{2}=\left(\sum_{i=1}^4 p_{i}x_{i}^{2}\right)-\mu^{2}$
$\Rightarrow$ $\sigma^{2}+\mu^{2}=\left(\frac{15}{61}\times 1^{2}\right)+\left(\frac{10}{61} \times2^{2}\right)+\left(\frac{30}{61} \times3^{2}\right)+\left(\frac{6}{61} \times4^{2}\right)$
= $\frac{15+40+270+96}{61}= \frac{421}{61}$