Answer:
Option A
Explanation:
Given that ,
P(x=1)12=P(x=2)12=P(x=3)1=P(x=4)15=k (let)
∵ P(x=1)+P(x=2)+P(x=3)+P(x=4)=1
⇒ k2+k3+k+k5=1⇒k=3061
So, P(x=1)=p1=302×61=1561
P(x=2)=p2=303×61=1061
P(x=3)=p3=3061
and P(x=4)=p4=305×61=661
∵ σ2=(∑4i=1pix2i)−μ2
⇒ σ2+μ2=(1561×12)+(1061×22)+(3061×32)+(661×42)
= 15+40+270+9661=42161