1)

A horizontal pipeline carrying gasoline has a cross-sectional diameter of 5 mm. If the viscosity and density of the gasoline are $6 \times 10^{-3}$  Poise and 720 kg/m3 respectively, the velocity after which the flow becomes turbulent is 


A) >1.66 m/s

B) >3.33 m/s

C) >1.6 $\times 10^{-3} m/s$

D) >0.33 m/s

Answer:

Option C

Explanation:

 Given,

 Diameter of pipe (d)= 5mm= $5 \times 10^{-3}$ m

 Density of gasoline ($\rho$)=720 kg/m3

 Viscosity  of gasoline ($\eta$)= $6 \times 10^{-3}$ Poise

 We know that,

 $V_{c}=\frac{\eta}{\rho d}=\frac{6 \times 10^{-3}}{720 \times 5 \times 10^{-3}}$

$=\frac{6 \times 10^{-3}}{3600\times10^{-3}}=\frac{1}{600}=\frac{1}{6}\times10^{-2}$

   $=1.66 \times 10^{-3} m/s$