Answer:
Option A
Explanation:
Given
η1=16
According to the question,
η1=T1−T2T1
T1−T2T1=16......(i)
η2=T1−(T2−62)T1⇒2×η1=T1−T2+62T1
2×16=T1−T2−62T1⇒13=T1−T2+62T1 .....(ii)
from Eq.(i) we ,get,
T1−T2=T16
Substituting this value in Eq(11), we get
13=T16+62T1⇒13=T1+3726T1
6T1=3T1+1116⇒3T1=1116⇒T1=372K
From Eq.(i) , we get
372−T2372=16
6(372−T2)=372
2232−6T2=372
6T2=2232−372
6T2=1860
T2=18606
T2=310K