Answer:
Option *
Explanation:
Given,
$t_{1}=30^{0}C$
$R_{1}=3.1 \Omega$
$t_{2}=100^{0} C$
$R_{2}=4.5 \Omega$
we know that,
temperature coefficient of resistance,
$\alpha=\frac{R_{2}-R_{1}}{R_{1}t_{2}-R_{2}t_{1}}=\frac{4.5-3.1}{(3.1)(100)-(4.5 \times 30)}$
= $\frac{1.4}{310-135}=\frac{1.4}{175}=0.008^{0} C^{-1}$