Answer:
Option D
Explanation:
We know that,
We have, $\lambda=\frac{h}{\sqrt{2mk}}$
$\therefore$ Kinetic energy (KE) $\propto \frac{1}{\lambda^{2}}$
Hence, $\frac{KE_{2}}{KE_{1}}= \left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{2}$
Here, $\lambda_{1}$=1 nm
$\lambda_{2}$=0.5 nm
$\frac{KE_{2}}{KE_{1}}= \left(\frac{1}{0.5}\right)^{2}$
KE2 = 4KE1
Hence, the kinetic energy is increasing three times
$\triangle KE=3KE_{1}$