1)

Consider a metal ball of radius  r moving at a constant velocity v in a uniform  magnetic field of induction  $\overline{B}$, Assuming that the direction of velocity forms an angle $\alpha$  with the direction of $\overline{B}$, the maximum potential  difference between  points  on the ball is 


A) $r|\overline{B}||\overline{V}|\sin \alpha$

B) $|\overline{B}||\overline{V}|\sin \alpha$

C) $2r|\overline{B}||\overline{V}|\sin \alpha$

D) $2r|\overline{B}||\overline{V}|\cos \alpha$

Answer:

Option C

Explanation:

 Given , 

The radius of metal ball=r

 Velocity =v

Angle between direction of velocity and magnetic field (B)= $\alpha$

 We know that,

                           $e= Bl v \sin \alpha$

 Here, l=2r,          $e=2r|B||v| \sin \alpha$