1)

A coil having n turns and resistance R$\Omega$  is connected with a galvanometer of resistance $4 R\Omega$. This combination is moved in time t seconds from a magnetic flux $\phi_{1}$  Weber to $\phi_{2}$  Weber. The induced current in the circuit is 


A) $\frac{(\phi_{2}-\phi_{1})}{5Rnt}$

B) -$n\frac{(\phi_{2}-\phi_{1})}{5Rt}$

C) -$\frac{(\phi_{2}-\phi_{1})}{Rnt}$

D) -$\frac{n(\phi_{2}-\phi_{1})}{Rt}$

Answer:

Option B

Explanation:

 Given,

 Number of turns in coil=n

 We know that, 

$Current(i)=\frac{e}{R'}=\frac{-\triangle \phi}{R' \triangle t}$             $\left[\because e=\frac{-\triangle \phi}{\triangle t}\right]$

     $R'= R+4R$

 $i=-\frac{(\phi_{2}-\phi_{1})}{(R+4R)\triangle t}$

$i=\frac{(\phi_{2}-\phi_{1})}{5R(\triangle t)}$

 Here, coil have n number of turns 

Hence, 

$i=-\frac{n(\phi_{2}-\phi_{1})}{5R(\triangle t)}$

 Induced current ,i= $i=-\frac{n(\phi_{2}-\phi_{1})}{5R t}$