Answer:
Option B
Explanation:
Given,
Number of turns in coil=n
We know that,
$Current(i)=\frac{e}{R'}=\frac{-\triangle \phi}{R' \triangle t}$ $\left[\because e=\frac{-\triangle \phi}{\triangle t}\right]$
$R'= R+4R$
$i=-\frac{(\phi_{2}-\phi_{1})}{(R+4R)\triangle t}$
$i=\frac{(\phi_{2}-\phi_{1})}{5R(\triangle t)}$
Here, coil have n number of turns
Hence,
$i=-\frac{n(\phi_{2}-\phi_{1})}{5R(\triangle t)}$
Induced current ,i= $i=-\frac{n(\phi_{2}-\phi_{1})}{5R t}$