Answer:
Option D
Explanation:
Given, P(A)=0.6 , P(B)=0.4 and $P(A\cap B)=0$ then
P(neither A nor B)= $P(\overline{A}\cap \overline{B})$
= $P(\overline{A\cap B})=1-P(A\cup B)$
= $1-P(A)-P(B)+P(A\cap B)$
$[\because P(A\cup B)=P(A)+P(B)-P(A\cap B)]$
=1-0.6-0.4+0=1-1=0