Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

 If the line x-y=-4K is a tangent  to the parabola y2=8x at P, then the perpendicular distance of normal at P from (K,2K) is 


A) 522

B) 722

C) 922

D) 122

Answer:

Option C

Explanation:

Since, x-y=-4k  or y=x+4k is a tangent to the parabola y2=8x, therefore

    4k=21            [4a=8a=2]

         k=12

 Also  points of concept  p is    (am2,2am)=(2,4)

  Now, equation of normal to the y2=8x at (2,4) is 

(y4)=42(2)(x2)

 [   Equation of normal to the parabola , y2=4ax at

                                        (x1,y1)isyy1=b2a(xx1)

   y4=1(x2)

   y4=x+2

   x+y=6

   x+y6=0

The perpendicular distance of normal from (k,2k) ie  (12,1)

=|12+16|12+12=|326|2=922