Answer:
Option D
Explanation:
Let a=13, b=14 and c=15, Then
$S= \frac{a+b+c}{2}=\frac{13+14+15}{2}=21$
And area of triangle
$\triangle=\sqrt{s(s-a)(s-b)(s-c)}$
= $\sqrt{21(21-13)(21-14)(21-15)}$
$\triangle=\sqrt{21\times8\times7\times6}=7\times3\times4=84$
Now, as we know $R=\frac{abc}{4 \triangle} $ and $r=\frac{\triangle}{s}$
$\therefore$ $R= \frac{ 13 \times 14 \times 15}{4 \times 84}$ and
$r=\frac{84}{21}$
$\Rightarrow$ $R=\frac{65}{8}$ and r=4
So, 8R+r=65+4=69