Answer:
Option B
Explanation:
Consider the equations
cos2θ=sinθ
⇒ 1−2sin2θ=sinθ
⇒ 2sin2θ+sinθ−1=0
⇒ 2sinθ(sinθ+1)−1(sinθ+1)=0
⇒ (sinθ+1)(2sinθ−1)=0
⇒ sinθ=−1 or sinθ=12
⇒ θ=3π2 or θ=π6,5π6
[∵θ∈(0,2π)]
Thus, number of solutions of the given equation is 3