1)

If the pair of straight  lines xy-x-y+1=0  and the line x+ay-3=0 are concurrent, then the acute angle between  the pair of lines 

$ax^{2}-13xy-7y^{2}+x+23y-6=0$ is 


A) $\cos^{-1}\left(\frac{5}{\sqrt{218}}\right)$

B) $\cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$

C) $\cos^{-1}\left(\frac{5}{\sqrt{173}}\right)$

D) $\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$

Answer:

Option B

Explanation:

Given equations of pair of straight lines, xy-x-y+1=0 can be rewritten as

          $x(y-1)-1(y-1)=0$

$\Rightarrow$  $(x-1) (y-1)=0$

$\Rightarrow$    $x-1$  and $y=1$

 Thus, the three concurrent  lines are

                    x=1 ........(i)

                     y=1 ......(ii)

 and x+ay-3=0......(iii)

 Since, Eqs.(i) and (ii)  , intersect  at only point , namely (1,1), therefore this point also satisfy  the Eq.(iii) , we get

           $1+a-3=0$

$\Rightarrow$       $a=2$

 Now, the pair  of lines

 $ax^{2}-13xy-7y^{2}+x+23y-6=0$ becomes

$2x^{2}-13xy-7y^{2}+x+23y-6=0$

 The acute angle $\theta$  between these lines is given by

$\tan \theta=\mid\frac{2\sqrt{h^{2}-ab}}{a+b}\mid=\mid\frac{2\sqrt{\left(-\frac{13}{2}\right)^{2}+14}}{-5}\mid$

  $=\mid\frac{2\sqrt{\left(\frac{169+56}{4}\right)^{}}}{-5}\mid=\mid\frac{2\sqrt{\frac{225}{4}}}{-5}\mid=$

                                         $=\mid\frac{2\times\frac{15}{2}}{-5}\mid=|-3|=3$

 $\theta= tan^{1}(3)= \cos^{-1}\left(\frac{1}{\sqrt{1+3^{2}}}\right)=\cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$