Answer:
Option A
Explanation:
Parametric equations of given circle is $x=12 \cos \theta$, $y=12 \sin \theta$
$[\because $ Parametric equation $x^{2}+y^{2}=r^{2}$ is $x=r \cos \theta$,$y=r\sin \theta$]
Now, coordinates of point A are given by
$x= 12 \cos \frac{\pi}{3}, y=12 \sin \frac{\pi}{3}$
$\Rightarrow$ $x=12.\frac{1}{2},y=12 .\frac{\sqrt{3}}{2}$
$\Rightarrow$ $x=6; y=6 \sqrt{3}$
ie, A=$(6,6 \sqrt{3})$
and coordinates of point B are given by
$x=12\cos \frac{\pi}{6},y=12 \sin \frac{\pi}{6}$
$\Rightarrow$ $x=12. \frac{\sqrt{3}}{2}.y=12 . \frac{1}{2}$
$\Rightarrow$ $x=6\sqrt{3},y=6$
i.e, $B=(6 \sqrt{3},6)$
Clearly , length of chord
$AB=\sqrt{6(\sqrt{3}-6)^{2}+(6-6\sqrt{3})^{2}}$
$=\sqrt{2\times6^{2}+(\sqrt{3}-1)^{2}}$
$=6\sqrt{2}(\sqrt{3}-1)$
=$6(\sqrt{6}-\sqrt{2})$