Answer:
Option C
Explanation:
We have,
α,β are the roots of the equations ax2+bx+c=0
∴ α+β=−ba,αβ=ca
Equations whose roots are 1−αα and 1−ββ are
x2−(1−αα+1−ββ)x+(1−αα)(1−ββ)=0
⇒ x2−(1α+1β−2)x+(1−(α+β)+αβαβ)=0
⇒ x2−(α+β−2αβαβ)x+(1−(α+β)+αβαβ)=0
⇒ αβx2−(α+β−2αβ)x+(1−(α+β)+αβ)=0
⇒ cax2−(−ba−2ca)x+(1+ba+ca)=0
⇒ cx2+(b+2c)x+(a+b+c)=0
Comparing with px2+qx+r=0 we get
r= a+b+c