Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

If α and β are the roots of the equation  ax2+bx+c=0 and the equation having roots 1αα

and 1ββ is px2+qx+r=0 then r=


A) a+2b

B) ab+bc+ca

C) a+b+c

D) abc

Answer:

Option C

Explanation:

We have,

α,β are the roots of the equations ax2+bx+c=0

        α+β=ba,αβ=ca

  Equations whose roots are 1αα and 1ββ are

  x2(1αα+1ββ)x+(1αα)(1ββ)=0

    x2(1α+1β2)x+(1(α+β)+αβαβ)=0

    x2(α+β2αβαβ)x+(1(α+β)+αβαβ)=0

     αβx2(α+β2αβ)x+(1(α+β)+αβ)=0

   cax2(ba2ca)x+(1+ba+ca)=0

     cx2+(b+2c)x+(a+b+c)=0

Comparing with px2+qx+r=0 we get

                                           r= a+b+c