Answer:
Option D
Explanation:
We have |a|=3,|b|=4 and |a+b|=5
Since, |a+b|=5
∴ |a+b|2=25
⇒ (a+b).(a+b)=25
⇒ a.a+a.b+b+a+b.b=25
⇒ |a|2+2a.b+|b|2=25 [∴ a.b=b.a]
⇒ 9+2a.b+16=25
⇒ a.b=0
Now, consider |a−b|2=(a−b)(a−b)
= a.a−a.b−b.a+b.b
= |a|2−2a.b+|b|2 [∵ a.b=b.a]
=9−0+16=25
⇒ |a−b|=5