Answer:
Option A
Explanation:
Clearly $\triangle =\frac{1}{2}a.b \sin c$
$\Rightarrow$ $\triangle =\frac{1}{2}.2.1. \sin 60^{0}$
$\Rightarrow$ $\triangle =\frac{\sqrt{3}}{2}$
$\Rightarrow$ $\triangle ^{2}=\frac{3}{4}$
$\Rightarrow$ $4\triangle^{2}=3$ .........(i)
By Sine rule, we get
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$\Rightarrow$ $\frac{\sin A}{1}=\frac{\sin B}{2}=\frac{\sin 60^{0}}{c}$
$\Rightarrow$ $\frac{\sin A}{\sin B}=\frac{1}{2}=\frac{\sin 60^{0}}{c}$
Considering last two terms, we get
$\frac{1}{2}$= $\frac{\frac{\sqrt{3}}{2}}{c}$
$\Rightarrow$ $c=\sqrt{3}$ ..........(ii)
Thus , $4 \triangle^{2}+c^{2}$=3+3=6 [(using Eqs.(i) and (ii)]