Loading [MathJax]/jax/output/HTML-CSS/jax.js


1)

[1+cos(π12)+isin(π12)1+cos(π12)isin(π12)]72=


A) 0

B) -1

C) 1

D) 12

Answer:

Option C

Explanation:

Consider ,[1+cos(π12)+isin(π12)1+cos(π12)isin(π12)]72

=[2cos2π24+i2sinπ24cosπ242cos2π24i2sinπ24cosπ24]72

 =[2cosπ24(cosπ24+isinπ24)2cosπ24(cosπ24isinπ24)]72

       =[(cosπ24+isinπ24)(cosπ24isinπ24)]72

=   [(cosπ24+isinπ24)(cosπ24isinπ24)×(cosπ24+isinπ24)(cosπ24isinπ24)]72

     =   [(cosπ24+isinπ24)2(cos2π24i2sin2π24)]72

=[(cosπ24+isinπ24)2cos2π24+sin2π24]72=(cosπ24+isinπ24)144

       = cos(π24×144)+isin(π24×144) 

                                                  [ By Dermoivre's theorm]

=cos6π+isin6π

=1                  [sinnπ=0nZ]   and  

                                [ cosnπ={1,ifniseven1,ifnisodd]