1)

The foci of the ellipse

25x2+4y2+100x4y+100=0 are


A) (5±2110,2)

B) (2,5±2110)

C) (2±2110,2)

D) (2,2±2110)

Answer:

Option B

Explanation:

 Given equation of ellipse can be rewritten as 

((5x)2+2(5)(10)x+102)+

                   ((2y)22(2)(1)y+12)10212+100=0

    (5x+10)^{2}+(2y-1)^{2}=1$

  25(x+2)2+4(y12)2=1

    (x+2)2(1/5)2+(y12)2(1/2)2=1 , which is of the form

                                                       x2a2+y2b2=1  , where a< b

 Here, a=15,b=12 and major axis of ellipse

x+2=0 , i.e, x=-2

 Now,  e=1a2b2=1425=2125=215

 therefore     foci are   (2,12±be)=(2,12±2110)

    =(2,5±2110)