Answer:
Option B
Explanation:
Given equation of ellipse can be rewritten as
((5x)2+2(5)(10)x+102)+
((2y)2−2(2)(1)y+12)−102−12+100=0
⇒ (5x+10)^{2}+(2y-1)^{2}=1$
⇒ 25(x+2)2+4(y−12)2=1
⇒ (x+2)2(1/5)2+(y−12)2(1/2)2=1 , which is of the form
x2a2+y2b2=1 , where a< b
Here, a=15,b=12 and major axis of ellipse
x+2=0 , i.e, x=-2
Now, e=√1−a2b2=√1−425=√2125=√215
therefore foci are (−2,12±be)=(−2,12±√2110)
=(−2,5±√2110)