Answer:
Option B
Explanation:
Consider,
$\sum_{k=1}^{n}k(k+2)=\sum_{k=1}^{n}(k^{2}+2k)=\sum_{k=1}^{n}k^{2}+2\sum_{k=1}^{n}k$
=$\frac{n(n+1)(2n+1)}{6}+2\frac{n(n+1)}{2}$
$=n(n+1)\left[\frac{(2n+1)}{6}+1\right]=n(n+1)\left[\frac{2n+7}{6}\right]$
=$\frac{n(n+1)(2n+7)}{6}$